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Abstract—The vibration characteristics of a piezoelectric 
fiber actuator with helical electrodes are studied theoretically 
and experimentally. Its working principle indicates that the 
torsional, longitudinal, and tangential deformations of the fi-
ber are coupled. A simplified dynamic model is deduced to 
investigate the properties of the coupled vibrations and their 
corresponding equivalent circuits are also provided. Resonant 
frequencies and mechanical coupling coefficients in free-free 
boundary condition are calculated. The trends of resonant fre-
quencies as functions of the electrode helical angle and fiber 
length are discussed and validated in experiments.

I. Introduction

Piezoelectric elements are widely used in electro-
mechanical devices as actuators and sensors to con-

vert electrical signals into mechanical movements, and 
vice versa [1], [2]. The performances of these devices are 
usually dependent on the static and dynamic behaviors 
of piezoelectric elements and attached structures. Thus, 
analyses of the characteristics of piezoelectric elements are 
necessary for their successful applications in practical sci-
entific and engineering problems.

Piezoelectric cylinders are important elements used for 
ultrasonic motors [3], [4], gyroscopes [5], [6], and acoustics 
devices [7], [8]. They are commonly designed with polar-
izing and driving electric field in the radial, longitudinal, 
and tangential (or circumferential) directions to actuate 
or sense bending, radial, longitudinal, torsional, and other 
vibrations [3]–[12]. Among these, torsional vibration is 
the most complicated one to achieve. Traditional ways 
of exciting torsional vibration include utilizing the d15 
piezoelectric effect by assembling longitudinally polarized 
cylindrical sectors with a tangential driving electric field 
[10] or by stacking circumferentially polarized disks with 
a longitudinal driving electric field [11]. The electrome-
chanical characteristics of these torsional elements have 
been presented in the literature [13], [14]. Another avail-
able way to generate torsional vibration is to polarize the 

piezoelectric cylinder helically with an angular deflection 
from the circumferential direction and excite it with a 
uniform longitudinal electric field [15]. However, this po-
larization is hard to achieve directly in practice.

In a past study, we presented a piezoelectric fiber ac-
tuator with the ability to generate torsional and longitu-
dinal deformations simultaneously [16], which has been 
successfully used to supply vibrations for impact rotary 
motors [17] and optical scanning mirrors [18]. As shown 
in Fig. 1, with a pair of parallel electrode wires wound 
around its surface, forming a helical structure and likely 
interlacing similar to the interdigitated electrodes (IDEs) 
[19], [20], the fiber transforms into a torsional element. 
Piezoelectric fiber is actually a small cylinder and the tor-
sional effect remains effective in large size [21]. A study of 
a similar tube piezoelectric transducer was reported by Xu 
et al. [22], who developed a 1-D mechanics model and gave 
numerical analyses of its vibration characteristics. In this 
study, an improved electromechanical model is created and 
experimental validation of the vibration characteristics 
of this kind of piezoelectric elements is conducted. First, 
working principle and static deformations of the fiber are 
explained briefly. Then, the dynamic model in the coupled 
vibrations is deduced and the corresponding equivalent 
circuits are provided. The trends of resonant frequencies 
and mechanical coupling coefficients are investigated with 
numerical analyses and validated in experiments.

II. Deformation of the Piezoelectric Fiber 
Actuator

Similar to the piezoelectric elements with IDEs, the 
induced electric field among the fibers is mainly perpen-
dicular to the electrode lines and parallel to the outer 
surface of the fiber, which results in another helical route. 
Unlike the style used in [15], the helical direction of the 
electric field is reversed alternately when it traverses the 
helical electrodes and the polarizing and driving electric 
fields share the same electrodes. In the actuation state, 
the piezoelectric d33 coefficient induces an in-plane strain 
parallel to the electric field, whereas the d31 coefficient 
induces another in-plane strain perpendicularly. Both 
the d33 and d31 strains have nonzero shear and normal 
components in the longitudinal and tangential orthogonal 
coordinates of the fiber. These components result in the 
final torsional, longitudinal, and tangential deformations 
of the fiber. In the previous study [16], we analyzed the 
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torsional and longitudinal strains of the fiber under static 
electric field in the free-load condition. The influences of 
the distribution of electric field, including its variations in 
the radial direction and non-uniformity between adjacent 
electrodes, on the performance of piezoelectric torsional 
displacement were discussed. Here, to simplify the process 
of dynamic analyses, the fiber is considered as a cylinder 
with thin wall thickness and uniform electric field, so the 
variations of relevant parameters in the radial and tangen-
tial directions are ignored.

As shown in Fig. 2, two coordinate systems are adopted 
to describe the electromechanical conversion of the fiber in 
formula, namely rθz structure coordinates and 123 mate-
rial coordinates. The r, θ, and z directions correspond to 
the radial, tangential, and longitudinal directions of the 
fiber. The 3 direction is the polarization direction, the 1 
direction is parallel to the helical electrode lines, and the 
2 direction is the same as the r direction. Meanwhile, l is 
the effective length of the fiber with electrodes, ro is the 
outer radius, t is the wall thickness, p is the longitudinal 
distance between the adjacent electrodes (the helical pitch 
is defined as 2p for a fiber with one pair of electrodes), and 
β is the helical angle of electrodes.

The linear electromechanical relationships of piezoelec-
tric material are typically characterized by piezoelectric 
equations in 123 coordinates:
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where S, T, E, and D are the matrices of strain, stress, 
electric field, and electric displacement, respectively. sE, d, 
and εT are the matrices of elastic compliance coefficient, 
piezoelectric coefficient, and permittivity constant, respec-

tively (superscripts E and T refer to the material con-
stants determined with constant electric field and stress).

Although electric parameters are conveniently de-
scribed in 123 coordinates, strains and stresses are more 
suitably defined in rθz coordinates for the fiber. Thus, by 
substituting S = AS ′ and T = BT ′ in (1), the piezoelectric 
equations are transformed into a more appropriate form:
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Here, S′ and T′ are the matrices of strains and stresses in 
rθz coordinates; A and B are their corresponding second-
order tensor transformation matrices.

In this study, we consider the outer and inner surfaces 
of the fiber to be free and the centrifugal and Coriolis 
forces are neglected in vibration. Thus, the stresses with 
respect to the radial direction can be ignored, because Tr 
= Trz = Trθ = 0. While the helical electrodes act as equi-
potential layers among the fiber, the electric field in the 
1 direction is significantly suppressed. On the assumption 
of uniform electric field, the electric field is considered as 
a pure helical form parallel to the 3 direction, as E1 = E2 
= 0. Therefore, the relevant constitutive relations of the 
fiber are simplified as:

	 S ds T s T s T Ez z z zq qq q q qq q q= + + +E E E
3 3,	 (3a)

	 S ds T s T s T Ez z z z z z z z zq qq q q q q q q= + + +E E E
3 3,	 (3b)

	 S s ds T s T T Ez z zz z z z z z= + + +q q q q
E E E

3 3,	 (3c)

	 D d T d T d Tz z z z1 1 1 1= + +q q q q ,	 (3d)

	 D d T d T d T Ez z z z3 3 3 3 33 3= + + +q q q q eT .	 (3e)
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Fig. 1. A piezoelectric fiber actuator with helical electrodes: (a) photo-
graph, (b) sketch. 

Fig. 2. Relationship between rθz and 123 coordinates. 
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Compared with the original piezoelectric equations, 
these expressions are more straightforward for the descrip-
tion and analysis of the fiber. The desired piezoelectric co-
efficients and elastic compliance coefficients can be defined 
from the original material parameters and used directly to 
determine the state of the fiber under electric excitation 
and mechanical loads. Unlike the traditional piezoelectric 
d33 (or d31) normal and d15 shear element, normal and 
shear strains (stresses) are coupled in this case, because 
electric excitation and mechanical loads generate torsion-
al, longitudinal and tangential deformations of the fiber 
simultaneously. Stresses (strains) in θz coordinates have 
shear components in 13 coordinates and induce a nonzero 
electric displacement in the 1 direction, which indicates a 
non-uniform distribution of charge on the electrodes with-
out changing the amount and sign of total charges.

Taking the typical piezoceramic material PZT-5A1 
(Smart Materials Co., Sarasota, FL) as an example, the 
changing trends of elastic compliance coefficients and 
piezoelectric coefficients as functions of electric field orien-
tation are investigated. The material properties of PZT-
5A1 are listed in Table I. Fig. 3(a) shows the variation of 
elastic compliance coefficients for values of the electrode 
helical angle β from 0 to 180°. The elastic compliance coef-
ficients fluctuate slightly around their original values. The 
intensities of these fluctuations are mainly determined by 
the elastic anisotropy of the material. The piezoelectric 
coefficients are strong functions of β in Fig. 3(b). Piezo-
electric torsional strain reaches the highest value when β 
= 45° (or 135°), with coefficient d3θz comparable to the d15 
coefficient. The longitudinal deformation is weakened be-
cause of the opposite effects of the d33 and d31 coefficients. 
The fiber produces a zero longitudinal displacement if a 
suitable electrode helical angle is chosen (β = 57.4° or 
122.6°).

III. Formulation of the Coupled Vibrations

The piezoelectric fiber with coupled torsional and lon-
gitudinal vibrations is shown in Fig. 4. M1, M2, F1 and 
F2 are the external torques and forces acting on the two 
ends of the fiber; φ1, φ2, uz1, and uz2 are the torsional and 

longitudinal displacements at the ends (a dot over a vari-
able denotes its corresponding velocity). In most cases, 
three kinds of basic boundary conditions are used: 1) free 
at two ends, 2) fixed at one end and free at another end, 
and 3) fixed at both ends. We analyze the vibration char-
acteristics under the condition that the fiber is free at the 
two ends, as:

	 M M F F1 2 1 20 0= = = =, .	 (4)

In the previous study [22], the electric field E3 was con-
sidered constant under the assumption that the distance 
between adjacent electrodes was not large. The intensity 
of E3 is expressed as

	 E
V

r3 =
p bo sin

,	 (5)

where V is the applied voltage. However, this assumption 
will influence the accuracy of the model in the resonant 
modes. Because of the electric continuity of piezoelectric 
material, electric parameters between the adjacent elec-
trodes satisfy:
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0, .	 (6)

From (3e), the non-uniform distribution of stresses in the 
3 direction clearly results in a distorted distribution of E3 
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TABLE I. Material Data for PZT-5A1. 

Symbol Value Unit

d33 440 10−12 m V−1

d31 −185 10−12 m V−1

d15 560 10−12 m V−1

ρ 7750 kg m−3

ε1
T/ε0 1660 —

ε3
T/ε0 2004 —

s11
E 16.5 10−12 Pa−1

s12
E −5.8 10−12 Pa−1

s13
E −7.2 10−12 Pa−1

s33
E 18.8 10−12 Pa−1

s44
E 47.6 10−12 Pa−1

s66
E 47.6 10−12 Pa−1

Fig. 3. Elastic compliance coefficients and piezoelectric coefficients as a function of β. 
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around its average value in (5). The variation of E3 in the 
3 direction indicates its variations in the θ and z direc-
tions and also changes other parameters. As mentioned 
above, the influences caused by the variations of relevant 
parameters in the θ direction are ignored to making a 
resoluble model, but their influences in the z direction are 
reserved.

We define n1 and n2 as the mechanical coupling coef-
ficients between the stresses and let

	 T Tn T T n Tz z zq q q q= + ¢ =1 2, ,	 (7)

where Tθ′ are independent parts with no respect to the 
position of the fiber. From (3e), (6), (7) and the assump-
tion of ∂T/∂θ = 0, we obtain that the distribution of the 
stresses and electric field in the z direction satisfies the 
condition
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Because of the assumptions regarding parameters in 
the r and θ directions, the 3-D motion equations and the 
relationships between strains and displacements for the 
piezoelectric fiber in rθz cylindrical coordinates are [7]
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In the coupled torsional and longitudinal vibrations of the 
fiber, radial vibration also exists but in a different style.

For the simple harmonic motion with frequency ω, we 
define the applied voltage V = Va exp (jωt) and the dis-
placements u = ua exp (jωt). Considering the radial dis-
placement, we obtain the result that tangential strain and 
stress satisfy the condition

	 T r Sq qrw= 2 2
o .	 (10)

Substituting (7) and (10) into (3a) yields

	
n s n s T

s

r
s z z z1 2 2 2

1

1

qq q qq q

qq

rw

rw

E

o

E E

E

-
æ

è
ççç

ö

ø
÷÷÷÷ + +

é

ë
ê
ê

ù

û
ú
ú

+ -
22 2 3 3 0
r

ET d
o

æ

è
ççç

ö

ø
÷÷÷÷ +¢ =q q .

	 (11)

In the coupled vibrations, Tθz has a large variation but 
Tθ′ and E3 are relatively constant, so we approximately 
obtain
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which indicate a coupling relation of stresses and the ef-
fect of Tθ′ for the radial vibration.

From (3b), (3c), and (7), the distributions of shear and 
longitudinal strains and stresses in the z direction satisfy 
the equations
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where sθzθz and szz are the modified shear and longitudinal 
elastic compliance coefficients including the piezoelectric 
effect and vibration coupling. Substituting (9b) and (13) 
into (9a), the governing equations for the torsional and 
longitudinal vibrations are

	
d u

dz
k uz

2

2
2 0q
q q+ = ,	 (14a)

	
d u

dz
k uz

z z

2

2
2 0+ = ,	 (14b)

where kθz = ω(ρ · sθzθz)1/2 is the torsional wave number 
and kz = ω(ρ · szz)1/2 is the longitudinal wave number. The 
solutions of (14) are

	 u A k z B k zz z z zq q q q q= +sin cos ,	 (15a)
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Fig. 4. Geometrical diagram and boundary condition of the fiber in cou-
pled vibrations.



	 u A k z B k zz z z z z= +sin cos ,	 (15b)

where A and B are determined by the boundary condition 
of the fiber in Fig. 4. The tangential and longitudinal vi-
brations at the two ends of the fiber are defined as

	 u u r u u rlq q q qj j( ) ( ), ,0 1 1 2 2= = = - = -o o 	 (16a)

	 u u u uz z z l z( ) ( ), .0 1 2= = - 	 (16b)

Then, the torsional and longitudinal displacements of the 
fiber are deduced as

	 j
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The strains, stresses, longitudinal force, and torque can 
also be calculated.

From (3), (5), and (10), the electric displacement D3 
can be expressed by the parameters Tθz, Tz, and E3. Then 
with (16) and (17), the charge of electrodes Q is calculated 
from the integration of D3, and the current is obtained us-
ing I = jωQ. The equivalent admittance of the fiber in the 
coupled vibrations is given as
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From this deduction, the equivalent circuit of the piezo-
electric fiber in coupled vibration can also be described in 
Fig. 5.

IV. Numerical Analyses and Experiments

For a piezoelectric fiber vibrating in the coupled reso-
nant modes, the admittance Y in (18) has the maximal 
value. Therefore, the frequency equations in the coupled 
vibrations are given as

	
k l k l n nz zq p= = - = ¼( ) , , , , .2 1 1 2 3

	 (19)

Given the material parameters and geometrical dimensions 
of the fiber, the resonant frequencies and mechanical cou-
pling coefficients can be calculated from (11b) and (19).

With help of the mathematical software MatLab (The 
MathWorks Inc., Natick, MA), numerical methods are 
used to find the solutions of the frequency equations. For 
PZT-5A1 fibers with a radius ro of 0.5 mm, the solutions 
are investigated as functions of the electrode helical angle β 
and fiber length l. From the computed results, two groups 
of solutions are found for the first-order coupled vibration: 
fT, n1T, and n2T for coupled torsional vibration mode; fL, 
n1L, and n2L for coupled longitudinal vibration mode (fT 
< fL). Figs. 6(a) and 6(c) show the resonant frequencies 
fT and fL as functions of electrode helical angle β and fi-
ber length l. Figs. 6(b) and 6(d) show the corresponding 
trends of mechanical coupling coefficients. Here, n1T and 
n2T denote the relative intensity of coupled tangential and 
longitudinal stresses in the torsional mode; n1L/n2L and 1/ 
n2L denote the relative intensity of coupled tangential and 
torsional stresses in the longitudinal mode. For constant 
fiber length (50 mm), fT fluctuates with electrode helical 
angle β, and we obtain the highest value when β = 35°. 
fL shows a large change for β < 45°, and tends toward a 
constant with β > 45°. n2T and 1/n2L have the same abso-
lute value but with inverse signs. A large coupling of tor-
sional and longitudinal stresses occurs with β around 25°. 
The coupled tangential stresses are weak in both torsional 
and longitudinal vibration modes, which can actually be 
ignored. When β tends to zero, the fiber can be regarded 
as a small piezoelectric stack; and when β is equal to 90°, 
the fiber is polarized and driven with a tangential electric 
field. In these two special cases, the couplings between 
torsional and longitudinal stresses are zero, and only lon-
gitudinal deformation is realized. When β = 50.7°, another 
zero coupling point occurs. However, this point is different 
from the static longitudinal zero point (β = 57.4°). For 
constant electrode helical angle (β = 30°), fT and fL are 
both inversely proportional to the fiber length l when l 
> 15 mm, and n2T and 1/n2L are nearly constant. How-
ever, for l < 15 mm, the coupling between longitudinal 
and tangential stresses has a remarkable improvement and 
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Fig. 5. Equivalent circuits of the piezoelectric fiber actuator in coupled 
vibrations.



influence on the resonant frequency of the longitudinal 
mode. For a fiber with length comparable to its radius, it 
becomes a cylinder similar to that described in [21].

Resonant frequencies of several samples are measured 
to verify the proposed analyses. The samples are made of 
tubular PZT-5A1 fibers (Smart Materials Co., Sarasota, 
FL) with outer radius ro of 0.5 mm and wall thickness t 
of 0.2 mm. Two pieces of copper wire with a diameter of 
40 μm are used as electrodes and wrapped around the out-
er surface of fibers with a pitch from1 mm to 5 mm. Ep-
oxy adhesive (DP460) with a thickness of around 20 µm 
is used to attach the electrodes onto the fiber surface for 
fixation and insulation. Finally, samples are polarized in 
thermostatic silicone oil at 80°C with an effective electric 
field intensity of 2000 V∙mm−1, lasting for 20 min. The 
finished samples have a uniform length of 50 mm with 
electrodes along the entire length of the fibers.

The frequency characteristics of the finished sam-
ples are measured with a precision impedance analyzer 
(GW8101, Good Will Instrument Co., New Taipei City, 
Taiwan) and corresponding resonant frequencies are ex-
tracted. Fig. 7 shows a typical admittance characteristic 
of the sample in free-free boundary condition. The reso-
nant frequencies of first-order torsional and longitudinal 
vibrations are approximately 19.2 and 29.8 kHz, respec-
tively. The high-order vibration modes can also be found, 
such as the third-order torsional mode at 58.3 kHz, the 

third-order longitudinal mode at 88.7 kHz, and the fifth-
order torsional mode at 95.9 kHz. The frequencies of the 
third-order and fifth-order modes are approximately three 
and five times the values of the first-order mode, which is 
consistent with the theoretical analyses. Two unremark-
able modes at 38.8 and 77.6 kHz, which considered as the 
second-order and fourth-order modes of torsional vibra-
tions, can be found in the admittance curve. They are not 
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Fig. 6. (a) Resonant frequencies as a function of β, (b) mechanical coupling coefficients as the function of β (l = 50 mm), (c) resonant frequencies as 
the functions of l, and (d) mechanical coupling coefficients as the function of l (β = 30°). 

Fig. 7. Typical frequency characteristics of a sample with free-free 
boundary condition. 
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expected for the fiber under electric excitation in theory, 
but result from the non-uniformity of the fiber and hand-
made electrodes.

Fig. 8(a) shows the experimental results of first-order fT 
and fL with different electrode helical angles β. The results 
show the same trend as theoretical curves, but there are 
clear discrepancies between theoretical and measured val-
ues. We consider three possible reasons for such discrepan-
cies: 1) discrepancy between the actual and given material 
parameters, 2) imperfect polarization of the fibers, and 3) 
discrepancy between the simplified model and practical 
samples. The latter two are considered to be the primary 
reasons. First, the surface helical electrodes induce a non-
uniform distribution of electric field between adjacent elec-
trodes [16]. The polarization electric field contorts severely 
near the electrodes (called the dead zone). Material in a 
dead zone will have an inefficient polarization and lead to 
discrepancies from the actual material parameters. More-
over, the pattern of the electric field is also distorted near 
the ends of the fiber. Second, the theoretical model simpli-
fies the variations of relevant parameters in the radial and 
tangential directions, which also results in discrepancies 
between the theoretical model and actual samples. The 
electric field angle changes in the radial direction and in-
fluences the material parameters of the fiber [16]. The ig-
nored variations of relevant parameters in the θ direction 
will weaken the changes of the modified elastic compliance 
coefficients sθzθz and szz, which have direct relations for the 
resonant frequencies. Fig. 8(b) shows the experimental re-
sults of torsional and longitudinal wave speeds v = 2frl as 
functions of fiber length. The change trends of both wave 
speeds agree well with the theoretical curves.

V. Conclusion

An improved dynamic model was developed to describe 
the complex coupled torsional and longitudinal vibrations 
of piezoelectric fiber with helical electrodes. Equivalent 
circuits of the coupled vibrations were also obtained. Nu-
merical analyses showed that the coupled torsional and 
longitudinal resonant frequencies are functions of electrode 

helical angle and fiber length. Their mechanical coupling 
coefficients can be optimized with the proper electrode he-
lical angle. The trends of the calculated resonant frequen-
cies were validated with experimental results. We believe 
that this work provides a useful reference for the optimiza-
tion of the piezoelectric fiber in practice and a significant 
attempt to investigate the characteristics of such kinds of 
piezoelectric elements.

Appendix

The second-order tensor transformation matrices A 
and B in (2) are shown in Eqs. (A-1a) and (A-1b), see 
next page. The full constitutive relations of the fiber in 
(3) are
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Fig. 8. (a) Measured resonant frequencies as a function of β (l = 50 mm), (b) measured wave speeds as a function of l (β = 27.2°). 
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The strains, stresses, longitudinal force, and torque of 
the fiber calculated from (17) are
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where S = 2πrot is the cross-section of the fiber.
The longitudinal forces and torques at the two ends of 

the fiber and current I, which was used to determine the 
equivalent circuits of the fiber in coupled vibration, are 
expressed as
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